Esercizio x1 - Funzione inversa

 $f(x) = \begin{cases} \log x & \text{se } 0 < x < 1 \\ a \cdot (x-1)^2 & \text{se } x \ge 1 \end{cases}$ Sia $f:]0, +\infty[\rightarrow R]$ la funzione definita da: dove a è un parametro reale.

- 1. Per quali valori di a la funzione è invertibile ?
 - 2. Per a = 2 scrivere la funzione inversa f^{-1}

Soluzione 1

La funzione y = log x nell'intervallo (0, 1) è crescente.

La funzione $y = a \cdot (x-1)^2$

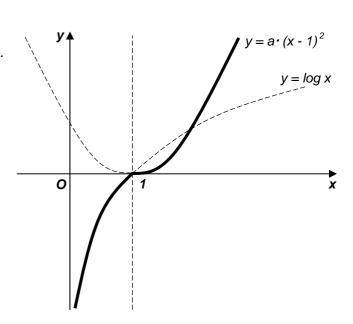
è una parabola: $y = ax^2 - 2ax + a$ avente vertice in V (1,0).

$$x_V = -\frac{B}{2A} = -\frac{-2a}{2a} = 1$$

$$y_V = a \cdot (1-1)^2 = 0$$

Per a > 0 : volge la concavità verso l'alto e nell'intervallo $[1,+\infty]$ la funzione è crescente.

Per a < 0 : volge la concavità verso il basso e nell'intervallo [1,+∞ la funzione è decrescente.



In definitiva per a > 0 la funzione

$$f(x) = \begin{cases} \log x & \text{se } 0 < x < 1 \\ a \cdot (x-1)^2 & \text{se } x \ge 1 \end{cases}$$
 è crescente, e quindi è invertibile.

Per
$$a = 2$$
 $f(x) = \begin{cases} log x & se \ 0 < x < 1 \\ 2 \cdot (x-1)^2 & se \ x \ge 1 \end{cases}$

$$\grave{e} \qquad x = e^y : (-\infty, 0) \rightarrow (0, 1)$$

La funzione inversa di
$$y = log x : (0,1) \rightarrow (-\infty,0)$$

È $x = e^y : (-\infty,0) \rightarrow (0,1)$
La funzione inversa di $y = 2 \cdot (x-1)^2 : [1,+\infty[\rightarrow [0,+\infty[$ è $x = 1+\sqrt{\frac{y}{2}} : [0,+\infty[\rightarrow [1,+\infty[$

Infatti:
$$y = 2 \cdot (x-1)^2$$
; $(x-1)^2 = \frac{y}{2}$; $x-1 = \sqrt{\frac{y}{2}}$; $x = 1 + \sqrt{\frac{y}{2}}$: $[0, +\infty[\to [1, +\infty[$.

In definitive la funzione inverse
$$f^{-1}: R \to (0, +\infty)$$
 è: $f^{-1}(y) = \begin{cases} e^y & \text{se } y < 0 \\ 1 + \sqrt{\frac{y}{2}} & \text{se } y \ge 0 \end{cases}$